addon #### Q28-100GP4-BXD3327-10-J-AO Juniper Networks® 100GBase-BX QSFP28 Single Lambda Transceiver (SMF, 1331nmTx/1271nmRx, 10km, LC, DOM, with FEC) #### **Features** - Compliant with 100G Lambda MSA 100G-LR Specifications - Single 3.3V Power Supply - Compliant with SFF-8636 Rev 2.10a - Single-mode Fiber - Bidi LC Connectors - Power dissipation - Hot Pluggable - Commercial Temperature 0 to 70 Celsius - Excellent ESD Protection - Metal with Lower EMI - RoHS Compliant and Lead Free ## **Applications** - Datacenter - 100GBase Ethernet ## **Product Description** This Juniper Networks® QSFP28 transceiver provides 100GBase-BX throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1331nmTx/1271nmRx via an LC connector. It is guaranteed to be 100% compatible with the equivalent Juniper Networks® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty. AddOn's transceivers are RoHS compliant and lead-free. TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products." ## **Regulatory Compliance** - ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4. - ESD to the LC Receptacle: compatible with IEC 61000-4-3. - EMI/EMC: compatible with FCC Part 15 Subpart B Rules, EN55022:2010. - Laser Eye Safety: compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1, 2. - RoHS: compliant with EU RoHS 2.0 directive 2015/863/EU. ## **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |----------------------------|--------|------|------|------|------|-------| | Maximum Supply Voltage | Vcc | -0.5 | | 3.6 | V | | | Storage Temperature | Tstg | -40 | | 85 | °C | | | Operating Case Temperature | Тс | 0 | | 70 | °C | | | Relative Humidity | RH | 5 | | 85 | % | | | Damage Threshold | RXdmg | 5.5 | | | dBm | | ## **Electrical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | | | |--|-------------------|-------|------|-------|-------|-------------------------|--|--| | Power Supply Voltage | Vcc | 3.135 | 3.3 | 3.465 | V | | | | | Power Dissipation | P _{DISS} | | | 4.5 | W | | | | | Transmitter | | | | | | | | | | Differential Data Input Swing Per Lane | | 900 | | | mVp-p | | | | | Differential Input Impedance | ZIN | 90 | 100 | 110 | Ω | | | | | DC Common-Mode Voltage (Vcm) | | -350 | | 2850 | mV | | | | | Receiver | | | | | | | | | | Differential Output Amplitude | | | | 900 | mVp-p | | | | | Differential Output Impedance | ZOUT | 90 | 100 | 110 | Ω | | | | | Output Rise/Fall Time | Tr/Tf | 12 | | | ps | 20-80% | | | | Eye Width | | 0.57 | | | UI | | | | | Eye Height Differential | | 228 | | | mV | @TP4, 1E ⁻¹⁵ | | | | DC Common-Mode Voltage (Vcm) | | -350 | | 2850 | mV | 1 | | | ## **Notes:** 1. Vcm is generated by the host. Specification includes effects of ground offset voltage. ## **Optical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | | | |--|--------|--------|--------|-------------------------|-------|-------|--|--| | Transmitter | | | | | | | | | | Signaling Speed | | | 53.125 | | GBd | | | | | Modulation Format | | | PAM4 | | | | | | | Center Wavelength | λC | 1324.5 | 1331 | 1337.5 | Nm | | | | | Side-Mode Suppression Ratio | SMSR | 30 | | | dB | | | | | Extinction Ratio | ER | 3.5 | | | dB | | | | | Transmit OMA | TxOMA | 0.7 | | 4.7 | dBm | | | | | Transmit Average Power | TxAVG | -1.4 | | 4.5 | dBm | 1 | | | | Launch Power in OMAouter Minus TDECQ | | -0.7 | | | dBm | 2 | | | | Launch Power in OMAouter Minus TDECQ | | -0.6 | | | dBm | 3 | | | | Transmitter and Dispersion Eye Closure | TDECQ | | | 3.4 | dB | | | | | Launch Power of Off Transmitter Per Lane | | | | -30 | dBm | | | | | Relative Intensity Noise | RIN | | | -136 | dB/Hz | | | | | Optical Return Loss Tolerance | | | | 15.6 | dB | 4 | | | | Transmitter Reflectance | | | | -26 | dB | | | | | Receiver | | | | | | | | | | Signaling Speed | | | 53.125 | | GBd | | | | | Center Wavelength | λC | 1264.5 | 1271 | 1277.5 | Nm | | | | | Damage Threshold | | 5.5 | | | dBm | | | | | Receive Power (OMAouter) | RxOMA | | | 4.7 | dBm | | | | | Average Receive Power | RxAVG | -7.7 | | 4.5 | dBm | | | | | Receiver Sensitivity (OMAouter) | SenOMA | | | MAX (-6.1,
SECQ-7.5) | dBm | 5 | | | | Stressed Sensitivity | SRS | | | -4.1 | dBm | | | | | Receiver Reflectance | | | | -26 | dB | | | | | LOS Assert | LOSA | -26 | | -12 | dBm | | | | | LOS De-Assert | LOSD | | | -10 | dBm | | | | ## Notes: - 1. Average launch power (minimum) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance. - 2. For ER≥4.5dB. - 3. For ER<4.5dB. - 4. Transmitter reflectance is defined looking into the transmitter. - 5. Sensitivity is specified at 2.4x10⁻⁴ BER. **Pin Descriptions** | Pin | Logic | Symbol | Name/Descriptions | Notes | |-----|------------|---------|---------------------------------------|-------| | 1 | | GND | Module Ground. | 1 | | 2 | CML-I | Tx2- | Transmitter Inverted Data Input. | | | 3 | CML-I | Tx2+ | Transmitter Non-Inverted Data Output. | | | 4 | | GND | Module Ground. | 1 | | 5 | CML-I | Tx4- | Transmitter Inverted Data Input. | | | 6 | CML-I | Tx4+ | Transmitter Non-Inverted Data Output. | | | 7 | | GND | Module Ground. | 1 | | 8 | LVTLL-I | ModSelL | Module Select. | | | 9 | LVTLL-I | ResetL | Module Reset. | | | 10 | | VccRx | +3.3V Receiver Power Supply. | 2 | | 11 | LVCMOS-I/O | SCL | 2-Wire Serial Interface Clock. | | | 12 | LVCMOS-I/O | SDA | 2-Wire Serial Interface Data. | | | 13 | | GND | Module Ground. | | | 14 | CML-O | Rx3+ | Receiver Non-Inverted Data Output. | | | 15 | CML-O | Rx3- | Receiver Inverted Data Output. | | | 16 | | GND | Module Ground. | 1 | | 17 | CML-O | Rx1+ | Receiver Non-Inverted Data Output. | | | 18 | CML-O | Rx1- | Receiver Inverted Data Output. | | | 19 | | GND | Module Ground. | 1 | | 20 | | GND | Module Ground. | 1 | | 21 | CML-O | Rx2- | Receiver Inverted Data Output. | | | 22 | CML-O | Rx2+ | Receiver Non-Inverted Data Output. | | | 23 | | GND | Module Ground. | 1 | | 24 | CML-O | Rx4- | Receiver Inverted Data Output. | 1 | | 25 | CML-O | Rx4+ | Receiver Non-Inverted Data Output. | | | 26 | | GND | Module Ground. | 1 | | 27 | LVTTL-O | ModPrsL | Module Present. | | | 28 | LVTTL-O | IntL | Interrupt. | | | 29 | | VccTx | +3.3V Transmitter Power Supply. | 2 | | 30 | | Vcc1 | +3.3V Power Supply. | 2 | | 31 | LVTTL-I | LPMode | Low-Power Mode. | | | 32 | | GND | Module Ground. | 1 | | 33 | CML-I | Tx3+ | Transmitter Non-Inverted Data Input. | | | 34 | CML-I | Tx3- | Transmitter Inverted Data Output. | | | 35 | | GND | Module Ground. | 1 | | 36 | CML-I | Tx1+ | Transmitter Non-Inverted Data Input. | | |----|-------|------|--------------------------------------|---| | 37 | CML-I | Tx1- | Transmitter Inverted Data Output. | | | 38 | | GND | Module Ground. | 1 | #### Notes: - 1. GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane. - 2. VccRx, Vcc1, and VccTx are the receiver and transmitter power supplies and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1, and VccTx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA. #### **Electrical Pin-Out Details** Top Side Viewed from Top Bottom Side Viewed from Bottom ## **Mechanical Specifications** #### **About AddOn Networks** In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support. Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history. Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products. ## **U.S. Headquarters** Email: sales@addonnetworks.com Telephone: +1 877.292.1701 Fax: 949.266.9273 ## **Europe Headquarters** Email: salessupportemea@addonnetworks.com Telephone: +44 1285 842070