•addon

MCP7Y00-N02A-AO

Mellanox[®] MCP7Y00-N02A Compatible TAA 800GBase-CU OSFP112 to 2xOSFP112-RHS Direct Attach Cable (Passive Twinax, 2.5m, Infiniband)

Features

- OSFP Module Compliant to OSFP MSA
- Enable 800Gbps to 2x400Gbps Transmission
- Transmission Data Rate Up to PAM4 106.25Gbps Per Channel
- Operating Temperature Range: 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Built-In EEPROM Functions

Applications

• 800GBase Ethernet

Product Description

This is a Mellanox[®] Compatible 800GBase-CU OSFP to 2xOSFP112-RHS direct attach cable that operates over passive copper with a maximum reach of 2.5m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 062524

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Supply Voltage	Vcc	3.13	3.3	3.47	V
Relative Operating Humidity	RH	5		85	%
Data Rate	DR		800		Gbps

Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Length	L			2.5	М		
AWG			25		AWG		
Jacket Material		Plastic Braided Mesh Technology Net, Silver Gray					

Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Resistance	Rcon			3	Ω	
Insulation Resistance	Rins			10	MΩ	
Raw Cable Impedance	Zca	95		110	Ω	
Mated Connector Impedance	Zmated	85		115	Ω	
Maximum Insertion Loss @26.56GHz	SDD21	11		25.3	dB	
Differential to Common- Mode Return Loss	SDD11/ 22			f < 26.56 5 ≤ f ≤40 }	dB	1
Differential to Common- Mode Conversion Loss	SCD21- SDD21	Conversion_loss(f)		$05 \le f < 12.89$ $2.89 \le f \le 40$	dB	1
Common-Mode to Common-Mode Return Loss	SCC11- 22	RLcc(f) ≥ 1.08			dB	1
Minimum COM	COM	3			dB	

Notes:

1. For $0.05 \le f \le 40$ GHz, where f is the frequency in GHz.

Pin	Symbol	Name/Description	Logic	Plug Sequence	Direction	Notes
1	GND	Module Ground.		1		
2	Tx2+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
3	Tx2-	Transmitter Data Inverted.	CML-I	3	Input from Host	
4	GND	Module Ground.		1		
5	Tx4+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
6	Tx4-	Transmitter Data Inverted.	CML-I	3	Input from Host	
7	GND	Module Ground.		1		
8	Tx6+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
9	Tx6-	Transmitter Data Inverted.	CML-I	3	Input from Host	
10	GND	Module Ground.		1		
11	Tx8+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
12	Tx8-	Transmitter Data Inverted.	CML-I	3	Input from Host	
13	GND	Module Ground.		1		
14	SCL	2-Wire Serial Interface Clock.	LVCMOS-I/O	3	Bi-Directional	1
15	Vcc	+3.3V Power.		2	Power from Host	
16	Vcc	+3.3V Power.		2	Power from Host	
17	LPWn/PRSn	Low-Power Mode/Module Present.	Multi-Level	3	Bi-Directional	2
18	GND	Module Ground.		1		
19	Rx7-	Receiver Data Inverted.	CML-0	3	Output to Host	
20	Rx7+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	
21	GND	Module Ground.		1		
22	Rx5-	Receiver Data Inverted.	CML-0	3	Output to Host	
23	Rx5+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	
24	GND	Module Ground.		1		
25	Rx3-	Receiver Data Inverted.	CML-0	3	Output to Host	
26	Rx3+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	
27	GND	Module Ground.		1		
28	Rx1-	Receiver Data Inverted.	CML-0	3	Output to Host	
29	Rx1+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	
30	GND	Module Ground.		1		
31	GND	Module Ground.		1		
32	Rx2+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	
33	Rx2-	Receiver Data Inverted.	CML-0	3	Output to Host	
34	GND	Module Ground.		1		
35	Rx4+	Receiver Data Non-Inverted.	CML-0	3	Output to Host	

Pin Descriptions

36	Rx4-	Receiver Data Inverted.	CML-0	3	Output to Host	
37	GND	Module Ground.		1		
-	-					
38	Rx6+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
39	Rx6-	Receiver Data Inverted.	CML-O	3	Output to Host	
40	GND	Module Ground.		1		
41	Rx8+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
42	Rx8-	Receiver Data Inverted.	CML-O	3	Output to Host	
43	GND	Module Ground.		1		
44	INT/RSTn	Module Interrupt/Module Reset.	Multi-Level	3	Bi-Directional	2
45	Vcc	+3.3V Power.		2	Power from Host	
46	Vcc	+3.3V Power.		2	Power from Host	
47	SDA	2-Wire Serial Interface Data.	LVCMOS-I/O	3	Bi-Directional	1
48	GND	Module Ground.		1		
49	Tx7-	Transmitter Data Inverted.	CML-I	3	Input from Host	
50	Tx7+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
51	GND	Module Ground.		1		
52	Tx5-	Transmitter Data Inverted.	CML-I	3	Input from Host	
53	Tx5+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
54	GND	Module Ground.		1		
55	Тх3-	Transmitter Data Inverted.	CML-I	3	Input from Host	
56	Tx3+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
57	GND	Module Ground.		1		
58	Tx1-	Transmitter Data Inverted.	CML-I	3	Input from Host	
59	Tx1+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
60	GND	Module Ground.		1		

Notes:

- 1. Open-drain with pull-up resistor on the Host.
- 2. See "Pin Assignment" below for the required circuit.

Pin Assignments

Wiring Diagram

	WIRING	D	IAGRAM				WIRING	D	IAGRAM	
F	PO END		P1 END			PO END			P2 END	
58	TX1n	\rightarrow	28	RX1n		52	TX5n	\rightarrow	28	RX1n
59	TX1p	\rightarrow	29	RX1p		53	TX5p	\rightarrow	29	RX1p
28	RX1n	←	58	TX1n		22	RX5n	-	58	TX1n
29	RX1p	->	59	TX1p	1	23	RX5p	~	59	TX1p
2	TX2p	\rightarrow	32	RX2p		8	ТХ6р	\rightarrow	32	RX2p
3	TX2n	\rightarrow	33	RX2n		9	TX6n	\rightarrow	33	RX2n
32	RX2p	←	2	TX2p		38	RX6p	←	2	TX2p
33	RX2n	←	3	TX2n		39	RX6n	~	3	TX2n
55	TX3n	\rightarrow	25	RX3n		49	TX7n	\rightarrow	25	RX3n
56	ТХЗр	\rightarrow	26	RX3p		50	TX7p	\rightarrow	26	RX3p
25	RX3n	←	55	TX3n		19	RX7n	←	55	TX3n
26	RX3p	←	56	ТХЗр		20	RX7p	~	56	TX3p
5	TX4p	\rightarrow	35	RX4p		11	TX8p	\rightarrow	35	RX4p
6	TX4n	\rightarrow	36	RX4n		12	TX8n	\rightarrow	36	RX4n
35	RX4p	←	5	TX4p		41	RX8p	←	5	TX4p
36	RX4n	->	6	TX4n		42	RX8n	←	6	TX4n
GNI	D GROUP		GNI	D GROUP		GNI	D GROUP		GN	D GROUP
1/4/7/	1/4/7/10/13/18/ 1		1/4/7/	/10/13/18/		1/4/7/	/10/13/18/		1/4/7/	/10/13/18/
21/24/	21/24/27/30/31/		21/24,	/27/30/31/		21/24/	/27/30/31/		21/24/	/27/30/31/
34/37	34/37/40/43/48/		34/37/40/43/48/			34/37	/40/43/48/		34/37	/40/43/48/
	54/57/60			54/57/60	51/54/57/60					54/57/60
	SHELL-SHI	ELD	ING-SH	IELL		SHELL-SHIELDING-SHELL				

Mechanical Specifications

Bending Radius

		800G OSFP		OSFP RHS				
Wire Gauge	OD	Bend Radius "R"	Min. Bend Radius "L"	Wire Gauge	OD	Bend Radius "R"	Min. Bend Radius "L"	
25AWG	12.1mm	25mm	86mm	25AWG	8.3mm	17mm	65mm	

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070